

A Case for Adopting Property-based
Testing in Cryptographic Software

Libraries

GelreCrypt 2025
Nijmegen, The Netherlands

I’m Anjan Roy,
a Software Engineer with knack for

Applied Cryptography.

Ex-Polygon, Ex-TII, PhD under Joan Daemen

What to test in crypto. software?
● Functioning as expected? Edge cases?
● Conforming to standard / spec.?
● Constant-time?
● Zeroize internal buffers with secrets?

Are there any gaps?
● How to ensure that we are actually covering all

the edge cases?
● Many non-standard crypto. proposal comes

with almost no test vectors. How to ensure
conformance?

Most commonly seen number of KATs = 1

Rare to find well crafted KATs

What can we do?
● Adopt property-based testing (PBT).
● Random samples inputs, flips random bits and asserts if

high-level invariants still hold.
● Better probabilistic guarantees than unit-testing+small

set of KATs.
● Not as extensive or costly as fuzzing. Test run finishes

faster.

PBT = Pseudo-Randomness + Repeated Property Checks

The most common pattern seen.

A fixed key, nonce, plaintext and
associated data.

Replicate couple of times. And
cover edges. Block length
boundary.

Testing AEAD

Random sample
key, nonce,
associated data
and plaintext

Random bit-flip

Assert decryption
failure+zeroize
decipheredtext
buffer

1

2

3

PBT: AEAD Edition

Testing Hash Fn.

Absorb all
input at once

1

Incremental
randomized
absorption, by
building look-
ahead buffer

2

Assert
digest
equality

3

PBT: Hash Edition

PBT: XOF Edition

Absorb all input at
once, then squeeze it
all out in a single go.

Absorb input in
pseudo-random
order. Depends on
message bytes itself.

Squeeze output in
pseudo-random
order. Depends on
output bytes itself.

1

2

3

Testing ML-KEM

1) Generate keypair from seed.
2) Encapsulate, get ciphertext and sharedSecret.
3) Decapsulate, get back sharedSecret’.
4) Assert sharedSecret = sharedSecret’.

PBT: ML-KEM Edition (1)

Malform public key, assert encaps failing

Random
bit-flip
ciphertext

Assert diff.
shared-
secret at
two ends

PBT: ML-KEM Edition (2)

Testing Galois Field Arithmetic
Part (1)

1) Test with additive or multiplicative identity.
2) Test with result overflowing.

Testing Galois Field Arithmetic
Part (2)

1) Test with additive or multiplicative identity.
2) Direct exponentiate vs. Exponentiate by repeated mult.

Random sample a
pair of GF elems

Assert: round-trip
testing for +, -

Assert: round-trip
testing for x, /

PBT: GF Edition

Metamorphism

Any libraries to take up PBT
boilerplate?

● proptest and quickcheck for Rust.

● hypothesis for Python.

● rapidcheck for C++. It’s quickcheck clone.

● Roll your own minimal PBT infra, in your
favourite language.

Easy PBT in Python, using
hypothesis

Thank you for your time and attention.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

